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ABSTRACT

Results of an extensive empirical study of the accuracy of seven

normal and three binomial approximations to the hypergeometric distri-

bution are presented in terms of maximum absolute error under various

conditions on the variables. The most useful condition are provided

by the minimum cell in the given or complementary 2x2 table and the

tail probability itself. Of the normal approximations, a modification

on one due to Peizer is far the best. It has error at most .0001, for

example, if the minimum cell is at least 9, or if the tail probability

is below .01 and the minimum cell is at least 4. Especially detailed

results are given for this approximation.

Key words: maximum absolute error, hypergeometric distribution,

normal approximation.
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1. Introduction

This paper reports results from an empirical study of several

normal and binomial approximations to the hypergeometric distribution.

The motivation for considering approximations is that machine computation

of an exact formula is often inefficient, because of the number of terms

required, and is sometimes infeasible because of overflow or underflow

in machine arithmetic. Furthermore, even tables as large as Lieberman

and Owen (1961) are inevitably inconvenient and incomplete, and they

cannot be made part of statistical computing packages. An empirical

study is needed because exact results on the accuracy of most approxi-

mations are intractible to obtain theoretically and the empircal knowledge

available is very limited. Indeed, it is nonexistent for the best normal

approximation studied here.

The performance criterion is essentially maximum absolute error

under certain conditions on the variables. Advantages of absolute over

relative error are that it is more often wanted in practical problems

and that it enables one to guarantee the numerical accuracy of the

approximated probabilities to a specified precision, such as k decimal

places, as in Ling (1978). As a refinement, we considered the maximum

absolute error in several ranges of the tail probability. This permits

one to get a feel for other criteria, such as relative error, also.

Five normal approximations were investigated: the usual 1 -

corrected chi statistic, three other normal approximations studied by

Molenaar (1970), and a modification of an approximation due to Peizer

(1966?; see Section 5). Binomial approximations are not appropriate
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competitors to normal approximations, since binomial tails present

almost the same computational problems as hypergeometric tails, merely

reducing the number of variables from four to three. For interest,

however, we investigated Wise's (1954) one-term binomial approximation

and two refinements studied by Molenaar (1970).

The notation and approximations are defined in Section 2. Some

comparisons are given in Section 3. Because the modified Peizer approxi-

mation is both far superior to the other normal approximations and simple

to compute, considerable additional inf -nation on its accuracy is provided

in Section 4. This information took at least 15 hours of CPU on an IBM 3033

computer and hence the expense of obtaining comparably detailed information

for other approximations would not be justified. Section 5 gives the

rationale in Peizer's approximation and its modification. Section 6 contains

information about our calculation and search procedures.

2; Notation and Approximations

Given the 2 2 Table with fixea margins:

a bin

c d m n+m = r+s = N,

r s N

the associated hypergeometric cumulative probability is
aN

P(X < aln,r,N) n X m N- (2.1)
J_0j r-j r

ilill j
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We consider approximations (D(z) where is the unit normal cumulative and

z is one of the following approximate normal deviates. The first is the

square-root of the usual I - corrected chi-square statistic,2

-~ 31/2
x - (a + - nr/N)/(mnrs/N ) (2.2)

Substituting the exact standard deviation in the denominator gives

u = (a + - nr/N)N/(mnrs/(N-)) I/2  (2.3)

Molenaar (1970, p. 120, equation 2.5) expands the exact normal deviate to

third order as

zI = x + (m-n)(s-r)(l-x
2 )/6(mnrs/N)1/2

+ fx3(5N2-14mn-14rs+38mnrs/N 2) (2.4)

+ x(-2N2+2mn+2rs+l0mnrs/N2)}N/72mnrs.

Molenaar also develops and investigates square root approximations, recom-

mending (p. 133)

z2 = 2((a+l) 1/2 (d+l)1 /2- bl/ 2 cl/ 2 )/(N-l)12 (2.5)

near the customary significance levels and

z= 2((a + _1)1/2 (d + .1)1/2 _-(b _ 1) 1/2 (C - 1)1/2/12 (2.6)

in the middle of the distribution. He also investigates adjusting X

by variable continuity corrections and added correction terms, obtaining

as his most accurate recommended approximate normal deviate (p. 136)

z4 = X + (l-x )[(m-n)(s-r)/6(mnrs/N)I/2

- X(N -3mn)N/48mnrs] . (2.7)
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A modification of an approximation due to Peizer (see Section 5) is

= a'd'-b'c' 2mnrsN' 1/2 (2.8)z5  IAD-BC (m'n'r's'N

where A = a+.5, B = b-.5, C = c-.5, and D = d+.5 are the 1- corrected2

entries,

a = A+ + + + +1 ' (2.9)

and similarly for b', c', and d' with n and r replaced by the row

and column total for the entry in question, m' = m +-, n' = n + 1

__6_ 6'
r=r+ 1 , '-= +A6 BN' zN--and

= log- + B log n + C log LN + D lo. D' (2.10)
nr ns mr ins'2.0

all logarithms being natural, and their arguments being the (corrected)

observed over "expected" cell frequencies. The modified Peizer approxi-

mation can also be expressed in terms of the function g defined and tabu-

lated in Peizer and Pratt (1968) as

z5 = (a'd'-b'c')(N'G/m'n'r's')1/2  (2.11)

where

6 = l+{ms.+ Nr._,BN, ns.g(N) + nr.g(m )}/N2; (2.12)
G-1fsg(L-) + mrg-- + g- +2.2

2 2
g(x) = (l-x +2x log x)/(l-x) 0 < x 1,

g(O) = 1, g(l) = 0. (2.13)

Noting the probability of b or more is 1 minus the probability of

b-1 or less and exchanging columns shows that
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P(X < aln,r,N) = I-P(X < bin,s,N). (2.14)

Since all the normal approximations above transform appropriately under

such an exchange of columns, or a similar exchange of rows, or an exchange

of rows with columns, we can without loss of generality arrange the table

so that

a < d and a < b < c (2.15)

or equivalently

2a+l < n < r < N-n. (2.16)

To present our results, we therefore introduce

k =min(a,b-l,c-l,d), (2.17)

and we let n and r denote the associated margins, with n < r. Then

(2.16) holds with a = k.

Very small values of k are of little interest in comparing approxi-

mations because the exact probability is easily calculated as a sum of

k+l terms by (2.1), which may be rewritten as

P(x < kln,r,N) = [1 + r+ +m-r+l

r(r+1) ... r+k'1)rn m M N(2.18)(m-r+l) .. (m-r+k) k' r /n '' (.8

Binomial approximations belong in a different category from normal

approximations, for several reasons. Binomial tables are far bulkier and

less complete than normal tables. For machine work, hypergeometric tails

are often as easy to compute directly as binomial tails. When
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an approximation to the hypergeometric distribution is needed, a binomial

approximation would itself usually need to be approximated. The modified

Peizer approximation to the hypergeometric distribution is already an

adaptation of the refined Peizer-Pratt normal approximation to the binomial,

which Ling (1978) found substantially better than others. Binomial approxi-

mations therefore cannot appropriately be regarded as competitors to normal

approximations. We nevertheless considered three binomial approximations.

All are to be applied after rearrangement of the 2x2 table so that n is the

smallest margin (n < r < N-n) but transform appropriately when columns

are exchanged (so that the remaining inequality in (2.16) is no loss of

generality). All approximate the hypergeometric tail by a binomial tail

with the same n and the same number of occurrences a but with p depending

on a as well as on the margins. The first is the first term of Wise's

(1954) series and takes for p

2r-a (.g
Pl= 2N-n+l

The second is a modification of this developed by Molenaar (1970) as an

approximation to Wise's (1954) second-order approximation and uses

P2 = Pl + [(n+l)(apl-(b-l)(l-pl)) - a(a+2)p 1

+ (b2 -l)(_Pl)-p1 ]/6(2N-n+l) 2 . (2.20)

The third is an alternative proposed by Molenaar as simpler than P2 but

usually close to it and almost as good:

pP+2n(rn/N-a- )/3(2N-n+l )2 (2.21)

Molenaar finds other binomial approximations inferior to these.
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3. Comparison of Approximations

We first compared the maximum absolute error of each of the approxi-

mations defined above, as a function of N, in the region (1 < n < r < N/2,

0 < a < n) corresponding to the entries tabulated by Lieberman and Owen

(1961, pp. 33-293). Table 1 gives the maximum error for selected N (: 50)

and the error graphs of six of the approximations are given in Figure A.

The maxima decrease slowly, if at all, as a function of N, with poor error

bounds. Examination of the detailed results revealed that all of the maxima

for the normal approximations occur at a = 0 (hence k = 0), a case of almost

no interest; while the maximum of the binomial aoproximations occur at nonzero

values of k. We conclude that it is far more useful to fix k than N in

tabling maximum errors and comparing approximations.

Table 2 gives, for the same approximations, the maximum error which

can occur for k = 4 and 8 in two ranges of N. For k = 4, N < 200, for

instance, this is the maximum error for all 2x2 tables with

min(a,b-l,c-l,d) = 4 and a+b+c+d < 200. The columns of Table 2

give results for restricted ranges of the smaller tail probability P.

The dependence of the error on other variables such as r and n, is com-

plicated and different for different approximations, so we have not attempted

to present it. Our main conclusions from Table 2 are:

1. The modified Peizer approximation is more accurate than

all other normal approximations by at least an order of

magnitude and is by far the best bet for any ordinary

machine calculation.

2. The results in this Table, together with various other

schemes of tabulation we have explored (by fixing various

combinations of (k,n,r,N)), suggest that the most important

variables are k and the tail probability.



8

3. For k fixed, the normal approximations, with the exception

of Molenaar adjusted x (2.7) and modified Peizer (2.8, 2.11),

have increasing maximum error as N increases. The binomial

approximations generally perform well when N is large, even

when k is relatively small.

4. The adjustment of the denominator between X and u is

insignificant.

5. Molenaar's finding that adjusting the square root (2.6) helps

in the middle of the distribution is only partially borne out.

6. Molenaar's adjustment of x (2.7) is superior to use of the

expansion (2.4) he gives (which he does not propose as an

approximation).

7. The best of the binomial approximations is Molenaar's approxi-

mation (2.20) to the second-order Wise approximation. It is

inferior to the modified Peizer approximation in the smaller

range of N but superior in the larger range (where N > 50k).

Binomial approximations should, of course, work well when N is large

compared to n, that is, the sampling fraction is small, and they become

exact as N + if n/N -, 0.

4. Accuracy of the Modified Peizer Approximation

Since the modified Peizer approximation is clearly superior to the

others we looked at for most purposes, we explored its accuracy consider-

ably further. Full presentation of a complicated function of four vari-

ables being impossible, we give results in several forms.

Table 3 and Figure B extend Table 2 to the range 0 < k < 50, giving

the maximum absolute error of the modified Peizer approximation for k
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fixed, with no other restriction except on the tail probability. In

particular, the absolute error is less than .0001 for all combinations

of variables (all 2x2 tables) with k > 9; for tail probabilities less

than .01, k > 4 suffices. Table 4 shows such values of k for various

standards of accuracy.

The values in Table 3 for k > 4 can be fitted extremely closely

by choosing an appropriate linear function of k, log k, and (log k)2

for each range of tail probabilities separately. The coefficients of

such functions obtained by unweighted regression of the values shown are

given at the foot of the table. All values fit within .08% except for

tail probabilities between .01 and .1, where the fit is within .7%

(.2% for k > 24). Since direct calculation is easy and the approximation

poorer for k < 3, these values were excluded from the fit.

Constraining other variables in addition to k of course reduces the

maximum possible error. As an illustration, we exhibit the maximum as

a function of (n,N) for k = 8 in Table 5 and a corresponding contour

plot in Figure C. The pattern for other values of k is similar.

As another illustration, Figure D shows the behavior of the error

as a function of r and n for N = 50 by means of error contours. Since

most of the contours never reach the axes, it appears difficult to find

restrictions on r and n which would bound the error usefully. Moreover,

error bounds based on r and/or n would probably be unacceptably large

because most of the maxima occur at small values of k.

5. Origin and Rationale for Peizer's Approximation and Its Modification

David Peizer (1966?) in handwritten notes , extends his joint work

with Pratt (1968) to the hypergeometric distribution as follows. He
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arrives, apparently by a combination of analysis, analogy, and inspiration,

at an approximate normal deviate of the form (2.11) with a' - A+cl , m' = m+c2 ,

and similarly for the other entries and margins, and N' a N+c3. By asymp-

totic expansion near the median, he finds that the best constants are

c1 =c 2 = . c3 c -1. To express (2.11) in terms of logs, one can use

l+qg(P/p) + pg(Q/q) = 2pq(P log(P/p) + Q log (Q/q))/(P-p)2  (5.1)

which holds for all nonnegative p, q, P, and Q with p+q = P + Q =1 and

can be obtained from (1.2) of Peizer and Pratt (1968) or otherwise.

Applying (5.1) once with p = r/N, P = A/n and once with p a r/N, P = C/m

gives, after some algebra,

G = 2mnrs L/N(AD-BC)2  (5.2)

where L is given by (2.10). Substituting (5.2) in (2.11) gives (2.8).

In the binomial limiting case, Peizer's approximation reduces to the

simpler of Peizer and Pratt's (1968) approximations. It can be modified

so as to reduce to their refined approximation in many ways, of which the

simplest is to add .0l/(n+l) + .0l/(r+l) to a' and similarly for b', c',

and d'. This is what we did in (2.9).

Calculation with the resulting approximation indicates that, at the

maximum absolute error over all probability classes, the tail probabilities

are usually too small and that adjustment of order N l  might help.

Adding a constant to N' does not give an adjustment of this order, but

adding the same multiple of I/N to a', b', c', and d' does, because of

cancellation. Of course, any term of order I/N vanishes in the binomial

limiting case. The choice -.08/N fared well in a few cases we looked at,

reducing the maximum absolute error by more than 30% in the central
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proability classes with k fixed, but at the expense of an increase in

the extreme probability classes. We did not investigate further refine-

ment along these lines at all extensively, but it might be useful under

some circumstances, especially when the main focus of attention is maximum

absolute error over all probability classes.

One other modification we tried was to replace the numerators .02

and .01 in (2.9) by the values which minimize the maximum asymptotic

absolute error in the binomial case. These values are (16+v)/810 = .0200969

and (8+23v)/810 = .0177836, where v = .278465 is the solution of ev = e
v

Replacing .02 and .01 by these values reduces the maximum asymptotic abso-

lute error by about 22% for all binomial and Poisson distributions. It

made no appreciable difference, however, in the nonasymptotic, hypergeo-

metric computer runs we carried out, and we gave it up. The asymptotically

minimax values can be derived by observing that the asymptotic absolute

error is of the form ClIz2-C 2 1e z2/2 , by Pratt (1968 (5.10)), and that the

maximum of this with respect to z is minimized by C2 . 2v. Calculations

like those of Pratt (1968, Section 5.2) show that C2 = 2v for the values

given above, and the reduction achieved is derived by further, similar

calculation.

6. Computational Considerations

6.1 Computational Precision and Machine Dependence

All numerical results reported in this study were computed in

double-precision on an IBM 3033 machine using FORTRAN programs compiled

by the extended-H compiler (with level 2 optimization). Since machine-

dependent roundoff errors occur at decimal digits well beyond those
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reported, the approximation errors can be attributed entirely to the quality

of the approximation formulas. Thus, the results are machine-dependent only

to the extent of possible dependence on the word lengths and floating point

softwares of various machines. The reported results may not hold for

computations performed in single-precision arithmetic or on machines with

word lengths considerably shorter than what was actually used.

6.2 Computation of "Exact" Hypergeometric Probabilities

Let p(x) = p(x,n,r,N) denote the hypergeometric point probabilities

in (2.1), i.e.,

p(x)= p(x,n,r,N) = (n )(Nn (N)

n!r! (N-n)!(N-r)l
n~r ~QILNt)I 0 < x < n. (6.1)

(n-x)!(r-x)!x! N!(N-n-r+!

Direct computations of these probabilities on the computer are

frequently infeasible either because of "overflow" in the computation of

factorials or "underflow" in the resulting p(x). For example,

p(l0, 500, 500, 1000) requires the computation of (500!)/

((400!)2(I00{)2(1000!)). The smallest of these factorials, 100!, is of

the order 10157 which greatly exceeds the maximum number directly computable

on the IBM 3033 machine (about 1076) or on most 32-bit word-length machines;

while the probability p(l00) is of the order 1084 which if computed by

other methods would cause "underflow" for being excessively small.

Lieberman and Owen (1961) calculate their tabled values by making use

of a computer stored table of Log N! for N = 1(1)2000, with 15 digits in

the mantissa. Presumably they did not convert log(p(x)) to p(x) when the

log is a large negative number. Although they claim their computed
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probability results to be accurate to at least eight decimal places

(Lieberman and Owen 1961, p. 4), with six decimal places tabulated, we

found (on checking only the case N = 20) 9 erroneous entries in the cumu-

lative probabilities for (x,n,r) = (4,5,5), (4,5,7), (5,6,8), (5,8,9),

(7,8,9), (4,9,9), (3,6,10), and (9,10,10). In each case, the last digit

of the tabled value is less than the correct value by 1.

We calculated our "exact" probabilities from (6.1), by the recursion

p(x+l,nr,N) = p(x,n,r,N) (x)(r+ for x>0, (6.2)

where

p~o~~r,) =(N-n) (N-n-I) ... N-n-r+l 
)

p(,n,r,N) = (N-r+l)

A special FORTRAN subroutine was written for the calculation of (6.2)

so that double-precision (about 15 significant digits) is maintained regard-

less of the magnitude of the point probabilities. Thus, even if p(x) is of

the order l0 O,O it is computed, although we do not cumulate the

point probabilities in (2.1) for p(x)< 10" 15. We are reasonably sure that

all the numerical results in this article are correct in all the digits

reported since computations were performed in double-precision and the

smallest error reported is of the order 10lO "

6.3 Search for Maximum Errors

The searches made for the comparison of the approximations in Tables 1

and 2 were exhaustive.

For further exploration of the modified Peizer approximation an ex-

haustive search was first made as far as the values of N shown in Table 6.

For small values of k, examination of the detailed output strongly indicated

that the maximum error had long since been passed in each interval of tail
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probabilities. Furthermore, the value of N/k at the maximum tended to

decrease with k in each interval and was less than 28 for 8 < k < 16.

(See Table 7 for k = 8 and 16.) Also r-n at the maximum never exceeded

4 for k < 16 and never exceeded 6 in any situation where the maximum

appeared to have been reached, except that, for tail probabilities between

.01 and .05, the maximum for k < 28 occurred at r = N-n, r-n < 8, N < 7k.

Accordingly, for each k > 18, the search was extended at least as far as

N = 30k but with the added restriction r-n < 12, the computer time for

exhaustive search being prohibitive for large values of N. The maxima

found thereby for k > 18 all occurred at N < 27.5k and r-n < 7. The only

surprise was that, for tail probabilities between .01 and .05, the

maximum switched from one tail to the other between k = 28 and k = 32,

while the maximizing N switched simultaneously from about 4.8k to about

27.4k with no change in the pattern or r-n but now r 0 N-n.

The numerical evidence convinces us that the search was adequate.

It is not surprising that the maximum should occur near r = n, for the

simple reason that this is one of the two extreme types of 2x2 table

possible. Furthermore, the other extreme is the binomial limit, where the

modified Peizer approximation reduces to the refined Peizer-Pratt approxi-

mation. The accuracy at the binomial limit is better than at r = n by a

factor of 3 or so. Presumably r is not exactly n at the maximum because

of discreteness. Specifically, there is a trade-off between coming close

to the extreme r = n and coming close to the valeu of r/N which would be

worst in a continuous version of the problem.
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FOOTNOTE

These notes are in Pratt's possession and almost surely precede

August 1966, when Peizer left Harvard [ ? ]. We have been unable

to locate him. He submitted a paper to JASA in March, 1968. It

was returned for revision but never resubmitted. Pratt has the

correspondence but no copy of the paper.

4 m
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TABLE 1

Maximum Absolute Error (x 10,000) of Approximations to the
Hypergeometric Distribution for Fixed N at Selected Values

N= 5 10 15 20 25 30 35 40 45 50

Normal Approximations

1/2-corrected x (2.2) 119 439 533 616 650 694 724 748 765 780

1/2-corrected u (2.3) 266 479 558 624 671 705 728 757 769 787

Molenaar expansion (2.4) 191 914 667 847 796 820 833 837 845 798

Molenaar square root (2.5) 413 444 510 594 663 707 747 788 814 837

Molenaar alt. sq. root (2.6) 559 259 352 399 425 442 453 461 467 471

Molenaar adjusted x (2.7) 134 181 487 495 400 379 485 488 444 438

Modified Peizer (2.8, 2.11) 82 50 48 47 46 45 45 45 44 44

Binomial Approximations

Wise (2.19) 111 159 131 144 135 136 134 148 140 147

Molenaar modified Wise (2.20) 4 15 11 14 11 12 11 13 12 13

Molenaar alt. mod. Wise (2.21) 36 40 26 27 20 21 17 20 17 18
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TABLE 2

Maximum Absolute Error (x 100,000) of Approximations to the
Hypergeometric Distribution for Fixed k at k = 4 and k = 8

k inP1-): .5 .10 .05 .010 .005 .0010 .0005 .0001

> .1 .05 .01 .005 .001 .0005 .0001 0

1/2-corrected N~s200 1874 957 984 595 370 94 55 17
X (2.2) 200<N~s500 2348 1134 1158 674 408 141 90 30

1/2-corrected N~s200 1882 919 950 586 367 94 58 18
u (2.3) 200<N:5500 2350 1119 1145 671 407 143 91 30

Molenaar N:5200 339 681 879 729 463 100 50 10
expansion (2.4) 200<K5500 327 700 940 779 480 100 50 10

Molenaar N:5200 3361 920 364 274 245 138 102 48
square root (2.5) 200<Ns500 4272 1262 505 310 279 159 118 57

Molenaar N:9200 806 734 743 547 422 205 147 67
alt. sq. root (2.6) 200<N~s500 1034 846 855 638 491 241 174 82

Molenaar N:5200 169 272 289 215 166 70 43 10
adjusted x (2.7) 200<N:S500 277 351 354 212 102 54 42 10

Modified NS200 33 24 16 8 6 3 2 1
Pelzer (2.8, 2.11) 200<N:5500 13 12 11 8 6 3 2 1

Wise Ns2OO 1488 1257 974 415 262 80 53 12
binomial (2.19) 200<N~s500 109 101 84 36 22 7 4 1

Molenaar N:5200 135 114 85 38 23 7 5 1
modified Wise (2.20) 200<N~s500 1 1 1 <1 <1 <1 <1 <1

Molenaar N:S200 251 210 163 73 43 13 9 2
alt.mod. Wise (2.21) 200<NS500 30 29 25 11 7 2 1 <1
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TABLE 2 (contd.)

Maximum Absolute Error (x 100,000) of Approximations to the
Hypergeometric Distribution for Fixed k at k = 4 and k = 8

k .5 .10 .05 .010 .005 .0010 .0005 .0001k = 8 min(P,1-P)

> .1 .05 .01 .005 .001 .0005 .0001 0

1/2-corrected N5200 1016 535 550 357 242 73 41 9
x (2.?) 200<NS500 1460 721 736 462 300 87 55 17

1/2-corrected N:200 1020 495 518 345 237 72 40 9
u (2.3) 200<Ns500 1462 705 723 458 298 89 56 18

Molenaar N5200 145 262 315 285 224 83 47 10
expansion (2.4) 200<NS500 141 260 328 307 246 89 48 10

Molenaar Ns200 1902 464 174 128 116 60 42 17
square root (2.5) 200<N5500 2762 773 297 162 146 76 54 22

Molenaar N5200 461 381 386 273 206 89 60 23
alt. sq. root (2.6) 200<Ns500 677 487 492 351 261 113 77 30

Molenaar NS200 90 106 169 127 92 34 21 6
adjusted x (2.7) 200<NS500 100 119 120 82 57 14 8 4

Modified N5200 10 8 5 3 2 1 1 <1
Peizer (2.8, 2.11) 200<Ns500 5 5 4 3 2 1 1 <1

Wise N5200 1476 1280 975 397 256 75 49 12
binomial (2.19) 200<NS500 199 191 153 63 41 13 8 2

Molenaar N5200 128 109 36 33 21 6 4 1
modified Wise (2.20) 200<Ns500 3 3 2 1 1 <1 <1 <1

Molenaar N5200 197 169 134 52 34 10 7 1
alt.mod. Wise (2.21) 200<NS500 42 41 33 13 9 3 1 <1

----------------
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TABLE 3

Maximum Absolute Error of Modified Peizer
Approximation to the Hypergeometric D~stribution

:s .5 .10 .05 .010 .005 .0010 .0005 .0001
min(P,1-P)

> .1 .05 .01 .005 .001 .0005 .0001 0

k

0 .0292 .02 65 .0140 .02 26 .02 21 .0120 .03 14 .O'57
1 .02 21 .0213 .0190 .03 53 .0244 .0121 .0314 .0"20
2 .0391 .0O161 .0143 .0323 .0'18 .04.85 .0457 .0"20
3 .0350 .0339 .03 25 .0113 .0110 .0"45 .0'30 .01*10
4 .0'333 .0'24 .0116 .04.84 .0'64 .0"28 .0418 .0s64
5 .0323 .0319 .01,11 .0"60 .0'45 .0419 .0 .13 .0s42

6 .03 17 .0313 .01.94 .0 45 .04.34 .0414 .0s92 .0531
7 .0313 .0111 .01.70 .0'36 .0426 .01,11 .0s70 .0523
8 .0310 .04.82 .01.53 .0429 .0421 .s87 .0556 .0518
9 .0"84 .0"70 .0"47 .0"24 .0"18 .0s7l .0'45 .0,15

10 .0"69 .0455 .0'37 .01.20 .0'15 .0559 .0s38 .0s12

11 .0458 .0448 .0"34 .0418 .0"13 .0s50 V032 Oslo0
12 .01.50 .01.43 .0"28 .0"15 .01,11 .0s44 .0s28 .0689
13 .01.43 .0"36 .01.25 .0413 .0'97 .0s38 .0s24 .0 77
14 .04.38 .0432 .0"23 .01.12 .0s86 .0s34 .0'21 .0668
15 .01.33 .0"29 .01,19 .01,11 .0s77 .0s30 .019 .0660

16 .01.30 .0425 .01,18 .0597 .0'69 .0s27 .0s17 .0654
18 .04.24 .01.21 .01.14 .'80 .0157 V022 V014 .0644
20 .04.20 .0417 .0"12 .0468 .0s48 .0518 .0512 .0636
24 .04.14 .04.12 V087 .051 .0'36 .0'14 .0685 .0626
28 .01,11 .0591 .0s68 V040 .0'28 .0111 .06 66 .0620

32 .0582 .0571 .0553 .033 .0s23 .0'85 *Q653 .0616
36 .0565 .0s57 .0s45 .027 .0s19 .0670 Of043 .0613
40 .0s54 V046 V038 .0523 .0'16 .0659 .0636 .0611
50 .0635 .0531 .0127 .0sl6 .0S11 .0'41 .0'25 .0776

coefficient of curve fitted to log (max absolute error)
in each class separately for 4 :5 k :S 50

k .00454 .00686 .02391 .00322 .00303 .00331 .00379 .00295
logk -1.372 -1.148 -.9002 -1.468 -1.552 -1.676 -1.714 -1.834

(logk)2  -.0959 -.1360 -.2168 -.0296 -.0201 -.0107 -.0099 .00548
constant -5.955 -6.465 -7.171 -7.299 -7.467 -8.151 -8.523 -9.442
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TABLE 4

Minimum k Guaranteeing at Least Specified Accuracy for
Modified Peizer Approximation to the Hypergeometric Distribution

Accuracy .0005 .0001 .00005 .00001 .000005

Any tail probability 4 9 13 29 42

Tail probability S.01 2 4 6 16 25

Tail probability :.001 2 3 3 8 11

---- --- --- ---- --- --- ---- --- --- ---- --- --- ---- --- ---

LAJ



22

TABLE 5

Maximum Absolute Error of the Modified Peizer Approximation
at k = 8 and Selected Values of (N, n)

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 34 36 38 40 42 44 46 48
N

a35 ----3 ---------------------------------------------------------------
35 43

36 -6 46
37 48 '8
38 41 -----
39 31 31 31

i ~~40 Ii iI
41 31 31 31 31

42 49 49 49 49 49
43 49 49 49 49 49

44 48 48 48 49 49 47
45 8 4848 48 48 '8---
46 48 48 48 48 48 48 45--
48 47 477 48 48 48 8 -6 3
50 47 7 47 47 47 7 47 5 42--
52 46 47 47 47 47 47 47 46 3 41
54 6 46 46 47 47 477 '7 44 42 '7
56 46 46 46 46 47 47 47 47 45 43 41 '4
58 45 6 46 466 46 '6 47 46 44 42 '8 '2
60 45 46 46 46 46 '6 '6 '6 46 45 '3 41 '4 'i
70 45 45 45 45 46 6 4646 46 46 k 6 45 44 2 s3 62------
80 44 45 45 45 45 45 45 46 46 46 46 46 46 45 42 '5 65 72 '3
90 44 44 45 '5 45 45 '5 45 45 '6 46 '6 '6 '6 45 43 '7 '1 78 3 04 --

100 44 44 44 45 45 45 45 45 45 45 45 45 5 6 6 4 6 5 43 '9 '2 2 1 '9--
110 44 44 44 44 45 45 45 45 45 45 45 45 45 45 45 46 5 3 '9 '2 '3 3'2
120 44 44 44 44 45 45 45 45 45 45 45 45 45 45 45 45 45 45 43 41 '2 '4 75
130 43 44 44 44 44 45 45 45 45 45 45 45 45 45 45 45 45 45 44 42 '9 '3 '5
140 43 44 44 44 '4 445 45 45 45 45 45 45 45 45 45 45 45 55 44 42 '9 '3
150 43 44 44 44 44 44 45 45 45 45 45 45 45 45 45 45 45 45 45 45 44 42 '8
160 43 44 44 4 4 44 44 5 5 45 45 '5 45 5 545 45 45 '5 '5 45 45 43 '2
180 43 44 44 44 44 44 &4 4S 45 45 45 45 45 45 45 45 45 45 45 45 45 45 44
200 43 43 44 44 44 44 44 44 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
220 43 43 44 44 44 44 44 44 45 45 45 45 45 45 4 5 5 45 5 45 45 5 45 45

240 43 43 44 44 44 44 44 44 44 45 45 45 45 45 45 45 45 45 &5 45 45 45 45

---- --- --- --- --- --- ---- --- --- --- --- --- ---- --- --- --- --- --- ---
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TABLE 5 (contd.)

Maximum Absolute Error of the Modified Peizer Approximation
at k = 8 and Selected Values of (N, n)

n 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
N

110 104

120 '4 '2
130 78 '8 '5 102
140 '6 '1 71 '1 106
150 '2 '6 61 72 '2 '1
160 '7 '2 66 61 72 '2 '2
180 42 41 '5 '2 '5 61 72 *3 94 104
200 44 43 42 s9 s4 sI 64 1 72 84 95 107
220 45 45 43 62 41 '6 '2 69 3 77 2 '3 '6 8----
240 '5 45 45 44 43 '2 '8 '4 '2 '6 62 '5 '1 '3 '5 108

a Cd = ocd = .dxlOC

+ .-2 ++ - + - - - - - - - - - - - - -
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TABLE 6

Maximum N Searched Exhaustively (2k+lsn:srN-n)
and in Region of Restricted Search (r-n s 12)

k 0 1 2 3 4 5 6 7
Exhaustive 400 400 400 400 400 400 400 375

k 8 9 10 11 12 13 14 15
Exhaustive 450 450 500 450 500 450 500 450

k 16 18 20 24 28 32 36 40 50
Exhaustive 475 500 500 550 650 400 400 750 650
Restricted 500 550 650 750 850 1000 1100 1200 1500

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
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TABLE 7

Location of Maximum Absolute Error of Modified Peizer Approximation
to the Hypergeometric Distribution at k = 8 and k = 16

: .5 .10 .05 .010 .005 .0010 .0005 .0001
min(P,1-P)

> .1 .05 .01 .005 .001 .0005 .0001 0

k = 8
n at max 20 19 20 29 27 24 23 21
r at max 20 24 26 31 28 26 25 22
N at max 40 43 46 218 199 199 198 187

k = 16
n at max 37 36 39 62 60 54 52 50
r at max 37 42 42 64 62 54 55 53
N at max 74 78 81 396 394 347 359 373

----------------------------------.14 ....A - ---- --- --- --- --- --- -
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Figure A. Maximum Absolute Errors of Approximations
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Figure B.

Maximum Absolute Error of Modified Peizer

Approximation to the Hypergeometric Distribution
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Figure C.

Contours of Maximum Absolute Error of

the Modified Peizer Approximation for k 8

35

40

45

50 .75 1-

60lo6

8010-

100

20 25 30 40 50 60 70 80

n1



29

Figure D.

Contours of Maximum Absolute Error of the

Modified Peizer Approximation for a a 1, N 50, and
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